All generalized Petersen graphs are unit-distance graphs
نویسندگان
چکیده
In 1950 a class of generalized Petersen graphs was introduced by Coxeter and around 1970 popularized by Frucht, Graver and Watkins. The family of I-graphs mentioned in 1988 by Bouwer et al. represents a slight further albeit important generalization of the renowned Petersen graph. We show that each I-graph I(n, j, k) admits a unit-distance representation in the Euclidean plane. This implies that each generalized Petersen graph admits a unit-distance representation in the Euclidean plane. In particular, we show that every I-graph I(n, j, k) has an isomorphic I-graph that admits a unitdistance representation in the Euclidean plane with a n-fold rotational symmetry, with the exception of the families I(n, j, j) and I(12m, m, 5m), m ≥ 1. We also provide unit-distance representations for these graphs.
منابع مشابه
Graceful labelings of the generalized Petersen graphs
A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...
متن کاملThe lower bound for the number of 1-factors in generalized Petersen graphs
In this paper, we investigate the number of 1-factors of a generalized Petersen graph $P(N,k)$ and get a lower bound for the number of 1-factors of $P(N,k)$ as $k$ is odd, which shows that the number of 1-factors of $P(N,k)$ is exponential in this case and confirms a conjecture due to Lovász and Plummer (Ann. New York Acad. Sci. 576(2006), no. 1, 389-398).
متن کاملGeneralized Degree Distance of Strong Product of Graphs
In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes m0, m1, . . . , mr&minus1 are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are co...
متن کاملSIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM
Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$ and $A(G)$ the adjacency matrix of $G$. The signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...
متن کاملGeneralizing the generalized Petersen graphs
The generalized Petersen graphs (GPGs) which have been invented by Watkins, may serve for perhaps the simplest nontrivial examples of “galactic” graphs, i.e. those with a nice property of having a semiregular automorphism. Some of them are also vertextransitive or even more highly symmetric, and some are Cayley graphs. In this paper, we study a further extension of the notion of GPGs with the e...
متن کامل